MIT Cancer Research RSS

Syndicate content
MIT News is dedicated to communicating to the media and the public the news and achievements of the students, faculty, staff and the greater MIT community.
Updated: 7 hours 41 min ago

Fast, noninvasive technique for probing cells may reveal disease

Wed, 08/02/2017 - 17:00

The stiffness or elasticity of a cell can reveal much about whether the cell is healthy or diseased. Cancer cells, for instance, are known to be softer than normal, while asthma-affected cells can be rather stiff.

Determining the mechanical properties of cells may thus help doctors diagnose and track the progression of certain diseases. Current methods for doing this involve directly probing cells with expensive instruments, such as atomic force microscopes and optical tweezers, which make direct, invasive contact with the cells.

Now MIT engineers have devised a way to assess a cell’s mechanical properties simply by observation. The researchers use standard confocal microscopy to zero in on the constant, jiggling motions of a cell’s particles — telltale movements that can be used to decipher a cell’s stiffness. Unlike optical tweezers, the team’s technique is noninvasive, running little risk of altering or damaging a cell while probing its contents.

“There are several diseases, like certain types of cancer and asthma, where stiffness of the cell is known to be linked to the phenotype of the disease,” says Ming Guo, the Brit and Alex d'Arbeloff Career Development Assistant Professor in MIT’s Department of Mechanical Engineering. “This technique really opens a door so that a medical doctor or biologist, if they would like to know the material property of cell in a very quick, noninvasive way, can now do it.”

Guo and graduate student Satish Kumar Gupta have published their results in the Journal of the Mechanics and Physics of Solids.

Stirring spoons

In his 1905 PhD thesis, Albert Einstein derived a formula, known as the Stokes-Einstein equation, that makes it possible to calculate a material’s mechanical properties by observing and measuring the movement of particles in that material. There’s just one catch: The material must be “in equilibrium,” meaning that any particle motions must be due to the effect of the material’s temperature rather than any external forces acting on the particles.

“You can think of equilibrium as being a hot cup of coffee,” Guo says. “The coffee’s temperature alone can drive sugar to disperse. Now if you stir the coffee with a spoon, the sugar dissolves faster, but the system is not driven solely by temperature any more and is no longer in equilibrium. You’re changing the environment, putting energy in and making the reaction happen faster.”

Within a cell, organelles such as mitochondria and lysosomes are constantly jiggling in response to the cell’s temperature. However, Guo says, there are also “many minispoons” stirring up the surrounding cytoplasm, in the form of proteins and molecules that, every so often, actively push vibrating organelles around like billiard balls.

The constant blur of activity in a cell has made it difficult for scientists to discern, simply by looking, which motions are due to temperature and which are due to more active, “spoon-like” processes. This limitation, Guo says, has “basically shut the door on using Einstein’s equation and pure observation to measure a cell’s mechanical properties.”

Frame by frame

Guo and Gupta surmised that there might be a way to tease out temperature-driven motions in a cell by looking at the cell within a very narrow timeframe. They realized that particles energized solely by temperature exhibit a constant jiggling motion. No matter when you look at a temperature-driven particle, it’s bound to be moving.

In contrast, active processes that can knock a particle around a cell’s cytoplasm do so only occasionally. Seeing such active movements, they hypothesized, would require looking at a cell over a longer timeframe.

To test their hypothesis, the researchers carried out experiments on human melanoma cells, a line of cancer cells they chose for their ability to grow easily and quickly. They injected small polymer particles into each cell, then tracked their motions under a standard confocal fluorescent microscope. They also varied the cells’ stiffness by introducing salt into the cell solution — a process that draws water out of cells, making them more compressed and stiff.

The researchers recorded videos of the cells at different frame rates and observed how the particles’ motions changed with cell stiffness. When they watched the cells at frequencies higher than 10 frames per second, they mostly observed particles jiggling in place; these vibrations appeared to be caused by temperature alone. Only at slower frame rates did they spot more active, random movements, with particles shooting across wider distances within the cytoplasm.

For each video, they tracked the path of a particle and applied an algorithm they had developed to calculate the particle’s average travel distance. They then plugged this motion value into a generalized format of the Stokes-Einstein equation.

Guo and Gupta compared their calculations of stiffness with actual measurements they made using optical tweezers. Their calculations matched up with measurements only when they used the motion of particles captured at frequencies of 10 frames per second and higher. Guo says this suggests that particle motions occurring at high frequencies are indeed temperature-driven.

The team’s results suggest that if researchers observe cells at fast enough frame rates, they can isolate particle motions that are purely driven by temperature, and determine their average displacement — a value that can be directly plugged into Einstein’s equation to calculate a cell’s stiffness.

“Now if people want to measure the mechanical properties of cells, they can just watch them,” Guo says.

The team is now working with doctors at Massachusetts General Hospital, who hope to use the new, noninvasive technique to study cells involved in cancer, asthma, and other conditions in which cell properties change as a disease progresses. 

“People have an idea that structure changes, but doctors want to use this method to demonstrate whether there is a change, and whether we can use this to diagnose these conditions,” Guo says.

This research was funded, in part, by MIT’s Department of Mechanical Engineering.

Categories: Cancer Research

Microscopy technique could enable more informative biopsies

Mon, 07/17/2017 - 03:59

MIT and Harvard Medical School researchers have devised a way to image biopsy samples with much higher resolution — an advance that could help doctors develop more accurate and inexpensive diagnostic tests.

For more than 100 years, conventional light microscopes have been vital tools for pathology. However, fine-scale details of cells cannot be seen with these scopes. The new technique relies on an approach known as expansion microscopy, developed originally in Edward Boyden’s lab at MIT, in which the researchers expand a tissue sample to 100 times its original volume before imaging it.

This expansion allows researchers to see features with a conventional light microscope that ordinarily could be seen only with an expensive, high-resolution electron microscope. It also reveals additional molecular information that the electron microscope cannot provide.

“It’s a technique that could have very broad application,” says Boyden, an associate professor of biological engineering and brain and cognitive sciences at MIT. He is also a member of MIT’s Media Lab and McGovern Institute for Brain Research, and an HHMI-Simons Faculty Scholar.

In a paper appearing in the 17 July issue of Nature Biotechnology, Boyden and his colleagues used this technique to distinguish early-stage breast lesions with high or low risk of progressing to cancer — a task that is challenging for human observers. This approach can also be applied to other diseases: In an analysis of kidney tissue, the researchers found that images of expanded samples revealed signs of kidney disease that can normally only be seen with an electron microscope.

“Using expansion microscopy, we are able to diagnose diseases that were previously impossible to diagnose with a conventional light microscope,” says Octavian Bucur, an instructor at Harvard Medical School, Beth Israel Deaconess Medical Center (BIDMC), and the Ludwig Center at Harvard, and one of the paper’s lead authors.

MIT postdoc Yongxin Zhao is the paper’s co-lead author. Boyden and Andrew Beck, a former associate professor at Harvard Medical School and BIDMC, are the paper’s senior authors.

“A few chemicals and a light microscope”

Boyden’s original expansion microscopy technique is based on embedding tissue samples in a dense, evenly generated polymer that swells when water is added. Before the swelling occurs, the researchers anchor to the polymer gel the molecules that they want to image, and they digest other proteins that normally hold tissue together.

This tissue enlargement allows researchers to obtain images with a resolution of around 70 nanometers, which was previously possible only with very specialized and expensive microscopes.

In the new study, the researchers set out to adapt the expansion process for biopsy tissue samples, which are usually embedded in paraffin wax, flash frozen, or stained with a chemical that makes cellular structures more visible.

The MIT/Harvard team devised a process to convert these samples into a state suitable for expansion. For example, they remove the chemical stain or paraffin by exposing the tissues to a chemical solvent called xylene. Then, they heat up the sample in another chemical called citrate. After that, the tissues go through an expansion process similar to the original version of the technique, but with stronger digestion steps to compensate for the strong chemical fixation of the samples.

During this procedure, the researchers can also add fluorescent labels for molecules of interest, including proteins that mark particular types of cells, or DNA or RNA with a specific sequence.

“The work of Zhao et al. describes a very clever way of extending the resolution of light microscopy to resolve detail beyond that seen with conventional methods,” says David Rimm, a professor of pathology at the Yale University School of Medicine, who was not involved in the research.

The expansion technique reveals additional molecular information that the electron microscope cannot provide. (Photo: Jimmy Day/MIT Media Lab)

The researchers tested this approach on tissue samples from patients with early-stage breast lesions. One way to predict whether these lesions will become malignant is to evaluate the appearance of the cells’ nuclei. Benign lesions with atypical nuclei have about a fivefold higher probability of progressing to cancer than those with typical nuclei.

However, studies have revealed significant discrepancies between the assessments of nuclear atypia performed by different pathologists, which can potentially lead to an inaccurate diagnosis and unnecessary surgery. An improved system for differentiating benign lesions with atypical and typical nuclei could potentially prevent 400,000 misdiagnoses and hundreds of millions of dollars every year in the United States, according to the researchers.

After expanding the tissue samples, the MIT/Harvard team analyzed them with a machine learning algorithm that can rate the nuclei based on dozens of features, including orientation, diameter, and how much they deviate from true circularity. This algorithm was able to distinguish between lesions that were likely to become invasive and those that were not, with an accuracy of 93 percent on expanded samples compared to only 71 percent on the pre-expanded tissue.

“These two types of lesions look highly similar to the naked eye, but one has much less risk of cancer,” Zhao says.

The researchers also analyzed kidney tissue samples from patients with nephrotic syndrome, which impairs the kidneys’ ability to filter blood. In these patients, tiny finger-like projections that filter the blood are lost or damaged. These structures are spaced about 200 nanometers apart and therefore can usually be seen only with an electron microscope or expensive super resolution microscopes.

When the researchers showed the images of the expanded tissue samples to a group of scientists that included pathologists and nonpathologists, the group was able to identify the diseased tissue with 90 percent accuracy overall, compared to only 65 percent accuracy with unexpanded tissue samples. 

“Now you can diagnose nephrotic kidney disease without needing an electron microscope, a very expensive machine,” Boyden says. “You can do it with a few chemicals and a light microscope.”

Uncovering patterns

Using this approach, the researchers anticipate that scientists could develop more precise diagnostics for many other diseases. To do that, scientists and doctors will need to analyze many more patient samples, allowing them to discover patterns that would be impossible to see otherwise.

“If you can expand a tissue by one-hundredfold in volume, all other things being equal, you’re getting 100 times the information,” Boyden says.

For example, researchers could distinguish cancer cells based on how many copies of a particular gene they have. Extra copies of genes such as HER2, which the researchers imaged in one part of this study, indicate a subtype of breast cancer that is eligible for specific treatments.

Scientists could also look at the architecture of the genome, or at how cell shapes change as they become cancerous and interact with other cells of the body. Another possible application is identifying proteins that are expressed specifically on the surface of cancer cells, allowing researchers to design immunotherapies that mark those cells for destruction by the patient’s immune system.

Boyden and his colleagues run training courses several times a month at MIT, where visitors can come and watch expansion microscopy techniques, and they have made their protocols available on their website. They hope that many more people will begin using this approach to study a variety of diseases.

“Cancer biopsies are just the beginning,” Boyden says. “We have a new pipeline for taking clinical samples and expanding them, and we are finding that we can apply expansion to many different diseases. Expansion will enable computational pathology to take advantage of more information in a specimen than previously possible.” 

Humayun Irshad, a research fellow at Harvard/BIDMC and an author of the study, agrees: “Expanded images result in more informative features, which in turn result in higher-performing classification models.”

Other authors include Harvard pathologist Astrid Weins, who helped oversee the kidney study. Other authors from MIT (Fei Chen) and BIDMC/Harvard (Andreea Stancu, Eun-Young Oh, Marcello DiStasio, Vanda Torous, Benjamin Glass, Isaac E. Stillman, and Stuart J. Schnitt) also contributed to this study.

The research was funded, in part, by the New York Stem Cell Foundation Robertson Investigator Award, the National Institutes of Health Director’s Pioneer Award, the Department of Defense Multidisciplinary University Research Initiative, the Open Philanthropy Project, the Ludwig Center at Harvard, and Harvard Catalyst.

Categories: Cancer Research

Metal-free MRI contrast agent could be safer for some patients

Wed, 07/12/2017 - 00:59

To enhance the visibility of organs as they are scanned with magnetic resonance imaging (MRI), patients are usually injected with a compound known as a contrast agent before going into the scanner. The most commonly used MRI contrast agents are based on the metal gadolinium; however, these metal compounds can be harmful for young children or people with kidney problems.

Researchers from MIT and the University of Nebraska have now developed a metal-free contrast agent that could be safer to use in those high-risk groups. Instead of metal, this compound contains organic molecules called nitroxides.

Furthermore, the new agent could be used to generate more informative MRI scans of tumors because it can accumulate at a tumor site for many hours without causing harm.

“This is an entirely organic, metal-free MRI contrast agent that would allow cancer researchers to start to think about how to image tumors in a dynamic way over long periods of time,” says Jeremiah Johnson, the Firmenich Career Development Associate Professor of Chemistry at MIT. 

Johnson is the senior author of the study, which appears in the journal ACS Central Science. The paper’s lead author is MIT graduate student Hung Nyugen. Other MIT authors are former postdoc Qixian Chen, postdoc Peter Harvey, graduate student Yivan Jiang, and professor of biological engineering Alan Jasanoff.

Alternatives to metal

MRI scans often rely on contrast agents that interact with water, influencing how the water molecules respond to a magnetic field. Contrast agents that exert a strong effect are said to have high “relaxivity,” which enhances the visual contrast between the target organ and surrounding tissue.

Most MRI contrast agents are based on gadolinium, which has very high relaxivity. These agents are usually excreted by the kidneys within about half an hour, so they can’t be used in people with certain types of kidney problems because the gadolinium will build up and exacerbate the kidney damage. Some agents are also considered potentially unsafe to use in babies.

“Gadolinium agents are by far the most commonly used, clinically,” Jasanoff says. “However, people do have some safety concerns about them, despite their wide use. There has been interest in going to non-gadolinium-containing contrast agents.”

Less often used are contrast agents made from iron oxide nanoparticles, which are considered somewhat safer because the body already contains iron. But some of these have also generated safety concerns recently.

As a possible alternative, scientists have tried developing nonmetal agents such as organic radicals, which are organic compounds that have unpaired electrons. However, these compounds tend to be very unstable, so they are usually broken down in the bloodstream within minutes. Also, these molecules generally have only one unpaired electron, so they don’t produce as much MRI contrast as metal agents.

In a study published in 2014, Johnson and his colleagues tried to improve the relaxivity of nitroxide radicals by assembling them into a structure known as a bottle brush polymer. This improved their stability and relaxivity, but not enough for imaging over long time periods, which is often necessary in cancer imaging. In the new paper, the researchers loaded the nitroxide molecules into a different type of polymer structure known as a brush-arm star polymer (BASP). This structure consists of many polymer chains arranged so that the spherical particle has a hydrophilic (water-attracting) core surrounded by hydrophobic (water-repelling) shell.

The researchers found that creating a high density of nitroxide molecules at the interface between the shell and core of the nanoparticles greatly increased the MRI relaxivity of the overall particle, to a level similar to that of metal-based agents.

The polymer shell also protects the radicals from being broken down in the bloodstream. The particles are stable enough to last in the bloodstream for up to 20 hours, long enough to accumulate in a tumor in mice. The researchers also showed that the nitroxide BASP nanoparticles are not harmful to mice even at very high doses.

Long-term monitoring

Johnson says that these particles could be designed to carry drugs as well as an MRI contrast agent, which would allow for long-term imaging of a tumor to monitor whether the drug is shrinking it. He is also working with researchers at MIT’s Koch Institute for Integrative Cancer Research to attach the contrast agent particles to antibodies that would help them to target specific cells for imaging and possibly drug delivery.

Another possibility is attaching the contrast agent to immune cells engineered to attack a patient’s tumor, allowing the cells to be tracked inside the body. “We’re trying to make particles that we can dock on cells and then watch the cells move in vivo,” Johnson says.

His lab is also working on improved versions of the contrast agent which have an even higher density of nitroxide, thus improving their relaxivity and enhancing the MRI contrast even more.

The research was funded by the National of Biomedical Imaging and Bioengineering, the National Science Foundation, a Wellcome-Trust MIT Postdoctoral Fellowship, and the Koch Institute Support (core) Grant from the National Cancer Institute.

Categories: Cancer Research

Converging on cancer at the nanoscale

Fri, 07/07/2017 - 08:00

This summer, the Koch Institute for Integrative Cancer Research at MIT marks the first anniversary of the launch of the Marble Center for Cancer Nanomedicine, established through a generous gift from Kathy and Curt Marble ’63.

Bringing together leading Koch Institute faculty members and their teams, the Marble Center for Cancer Nanomedicine focuses on grand challenges in cancer detection, treatment, and monitoring that can benefit from the emerging biology and physics of the nanoscale.

These challenges include detecting cancer earlier than existing methods allow, harnessing the immune system to fight cancer even as it evolves, using therapeutic insights from cancer biology to design therapies for previously undruggable targets, combining existing drugs for synergistic action, and creating tools for more accurate diagnosis and better surgical intervention.

Koch Institute member Sangeeta N. Bhatia, the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science, serves as the inaugural director for the center.

”A major goal for research at the Marble Center is to leverage the collaborative culture at the Koch Institute to use nanotechnology to improve cancer diagnosis and care in patients around the world,” Bhatia says.

Transforming nanomedicine

The Marble Center joins MIT’s broader efforts at the forefront of discovery and innovation to solve the urgent global challenge that is cancer. The concept of “convergence” — the blending of the life and physical sciences with engineering — is a hallmark of MIT, the founding principle of the Koch Institute, and at the heart of the Marble Center’s mission.

“The center galvanizes the MIT cancer research community in efforts to use nanomedicine as a translational platform for cancer care,” says Tyler Jacks, director of the Koch Institute and a David H. Koch Professor of Biology. “It’s transformative by applying these emerging technologies to push the boundaries of cancer detection, treatment, and monitoring — and translational by promoting their development and application in the clinic.”

The center’s faculty — six prominent MIT professors and Koch Institute members — are committed to fighting cancer with nanomedicine through research, education, and collaboration. They are:

Sangeeta Bhatia (director), the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science;

Daniel G. Anderson, the Samuel A. Goldblith Professor of Applied Biology in the Department of Chemical Engineering and the Institute for Medical Engineering and Science;

Angela M. Belcher, the James Mason Crafts Professor in the departments of Biological Engineering and Materials Science and Engineering;

Paula T. Hammond, the David H. Koch Professor of Engineering and head of the Department of Chemical Engineering;

Darrell J. Irvine, professor in the departments of Biological Engineering and Materials Science and Engineering; and

Robert S. Langer, the David H. Koch Institute Professor.

Extending their collaboration within the walls of the Institute, Marble Center members benefit greatly from the support of the Peterson (1957) Nanotechnology Materials Core Facility in the Koch Institute’s Robert A. Swanson (1969) Biotechnology Center. The Peterson Facility’s array of technological resources and expertise is unmatched in the United States, and gives members of the center, and of the Koch Institute, a distinct advantage in the development and application of nanoscale materials and technologies.

Looking ahead

The Marble Center has wasted no time getting up to speed in its first year, and has provided support for innovative research projects including theranostic nanoparticles that can both detect and treat cancers, real-time imaging of interactions between cancer and immune cells to better understand response to cancer immunotherapies, and delivery technologies for several powerful RNA-based therapeutics able to engage specific cancer targets with precision. 

As part of its efforts to help foster a multifaceted science and engineering research force, the center has provided fellowship support for trainees — as well as valuable opportunities for mentorship, scientific exchange, and professional development.

Promoting broader engagement, the Marble Center serves as a bridge to a wide network of nanomedicine resources, connecting its members to MIT.nano, other nanotechnology researchers, and clinical collaborators across Boston and beyond. The center has also convened a scientific advisory board, whose members hail from leading academic and clinical centers around the country, and will help shape the center’s future programs and continued expansion.

As the Marble Center begins another year of collaborations and innovation, there is a new milestone in sight for 2018. Nanomedicine has been selected as the central theme for the Koch Institute’s 17th Annual Cancer Research Symposium. Scheduled for June 15, 2018, the event will bring together national leaders in the field, providing an ideal forum for Marble Center members to share the discoveries and advancements made during its sophomore year.

“Having next year’s KI Annual Symposium dedicated to nanomedicine will be a wonderful way to further expose the cancer research community to the power of doing science at the nanoscale,” Bhatia says. “The interdisciplinary approach has the power to accelerate new ideas at this exciting interface of nanotechnology and medicine.”

To learn more about the people and projects of the Koch Institute Marble Center for Cancer Nanomedicine, visit nanomedicine.mit.edu.

Categories: Cancer Research

How cells combat chromosome imbalance

Mon, 06/19/2017 - 04:59

Most living cells have a defined number of chromosomes: Human cells, for example, have 23 pairs. As cells divide, they can make errors that lead to a gain or loss of chromosomes, which is usually very harmful.

For the first time, MIT biologists have now identified a mechanism that the immune system uses to eliminate these genetically imbalanced cells from the body. Almost immediately after gaining or losing chromosomes, cells send out signals that recruit immune cells called natural killer cells, which destroy the abnormal cells.

The findings raise the possibility of harnessing this system to kill cancer cells, which nearly always have too many or too few chromosomes.

“If we can re-activate this immune recognition system, that would be a really good way of getting rid of cancer cells,” says Angelika Amon, the Kathleen and Curtis Marble Professor in Cancer Research in MIT’s Department of Biology, a member of the Koch Institute for Integrative Cancer Research, and the senior author of the study.

Stefano Santaguida, a research scientist at the Koch Institute, is the lead author of the paper, which appears in the June 19 issue of Developmental Cell.

“A downward spiral”

Before a cell divides, its chromosomes replicate and then line up in the middle of the cell. As the cell divides into two daughter cells, half of the chromosomes are pulled into each cell. If these chromosomes fail to separate properly, the process leads to an imbalanced number of chromosomes in the daughter cells — a state known as aneuploidy.

When aneuploidy occurs in embryonic cells, it is almost always fatal to the organism. For human embryos, extra copies of any chromosome are lethal, with the exceptions of chromosome 21, which produces Down syndrome; chromosomes 13 and 18, which lead to developmental disorders known as Patau and Edwards syndromes; and the X and Y sex chromosomes, extra copies of which may cause various disorders but are not usually lethal.

In recent years, Amon’s lab has been exploring an apparent paradox of aneuploidy: When normal adult cells become aneuploid, it impairs their ability to survive and proliferate; however, cancer cells, which are nearly all aneuploid, can grow uncontrollably.

“Aneuploidy is highly detrimental in most cells. However, aneuploidy is highly associated with cancer, which is characterized by upregulated growth. So, a very important question is: If aneuploidy hampers cell proliferation, why are the vast majority of tumors aneuploid?” Santaguida says.

To try to answer that question, the researchers wanted to find out more about how aneuploidy affects cells. Over the past few years, Santaguida and Amon have been studying what happens to cells immediately after they experience a mis-segregation of chromosomes, leading to imbalanced daughter cells.

In the new study, they investigated the effects of this imbalance on the cell division cycle by interfering with the process of proper chromosome attachment to the spindle, the structure that holds chromosomes in place at the cell’s equator before division. This interference leads some chromosomes to lag behind and get shuffled into the two daughter cells.

The researchers found that after the cells underwent their first division, in which some of the chromosomes were unevenly distributed, they soon initiated another cell division, which produced even more chromosome imbalance, as well as significant DNA damage. Eventually, the cells stopped dividing altogether.

“These cells are in a downward spiral where they start out with a little bit of genomic mess, and it just gets worse and worse,” Amon says.

“This paper very convincingly and clearly shows that when chromosomes are lost or gained, initially cells can’t tell if their chromosomes have mis-segregated,” says David Pellman, a professor of pediatric oncology at Dana-Farber Cancer Institute who was not involved in the study. “Instead, the imbalance of chromosomes leads to cellular defects and an imbalance of proteins and genes that can significantly disrupt DNA replication and cause further damage to the chromosomes.”

Targeting aneuploidy

As genetic errors accumulate, aneuploid cells eventually become too unstable to keep dividing. In this senescent state, they start producing inflammation-inducing molecules such as cytokines. When the researchers exposed these cells to immune cells called natural killer cells, the natural killer cells destroyed most of the aneuploid cells.

“For the first time, we are witnessing a mechanism that might provide a clearance of cells with imbalanced chromosome numbers,” Santaguida says.

In future studies, the researchers hope to determine more precisely how aneuploid cells attract natural killer cells, and to find out whether other immune cells are involved in clearing aneuploid cells. They would also like to figure out how tumor cells are able to evade this immune clearance, and whether it may be possible to restart the process in patients with cancer, since about 90 percent of solid tumors and 75 percent of blood cancers are aneuploid.

“At some point, cancer cells, which are highly aneuploid, are able to evade this immune surveillance,” Amon says. “We have really no understanding of how that works. If we can figure this out, that probably has tremendous therapeutic implications, given the fact that virtually all cancers are aneuploid.”

The research was funded, in part, by the National Institutes of Health, the Kathy and Curt Marble Cancer Research Fund, the American Italian Cancer Foundation, a Fellowship in Cancer Research from Marie Curie Actions, the Italian Association for Cancer Research, and a Koch Institute Quinquennial Cancer Research Fellowship.

Categories: Cancer Research